Quadrilateral - basic concepts
$A,B,C,D$ - vertices
$a=BC, b=CD, c=AD, d=AB$ - sides
$α, β, γ, δ$ - interior angles
$α', β', γ', δ'$ - exterior angles
$d_1, d_2$ - diagonals
$$P=a+b+c+d$$ $$α+β+γ+δ=360°$$ $$α'+β'+γ'+δ'=360°$$
Types of quadrilaterals
Trapezoid
$a=AB, b=CD$ - bases
$l_1, l_2$ - sides
$d_1=AC, d_2=BD$ - diagonals
$h$ - height
$M$ - midpoint of AD
$N$ - midpoint of BC
$m=MN$ - central median $MN∥AB$
If $l_1=l_2$ then $ABCD$ is Isosceles triangle and $α = β, d_1 = d_2$
If $α = 90°$ then $ABCD$ is right triangle
If $ABCD$ is circumscribed, then $a+b=2l$
Parallelogram
$AB=CD, BC=AD$ - sides
$α=γ, β=δ$ - angles
$α+δ=180°$, $β+γ=180°$
$d_1=AC, d_2=BD$ - diagonals
$h_a, h_b$ - heights
Rectangle
Rhombus
$d_1, d_2$ - diagonals, bisectors of the interior angles
$$d_1⊥d_2$$ $$P=4a$$