{a1,1x1+a1,2x2+...+a1,nxn=b1a2,1x2+a2,2x2+...+a2,nxn=b2...am,1x2+am,2x2+...+am,nxn=bm \left\{ \begin{aligned} a_{1,1} x_1 + a_{1,2} x_2 + ... + a_{1,n} x_n &= b_1 \\ a_{2,1} x_2 + a_{2,2} x_2 + ... + a_{2,n} x_n &= b_2 \\ ... \\ a_{m,1} x_2 + a_{m,2} x_2 + ... + a_{m,n} x_n &= b_m \end{aligned} \right.

  1. (LiLjL_i \leftrightarrow L_j)
  2. (LiλLiL_i \leftarrow \lambda L_i)
  3. (LiLi+λLjL_i \leftarrow L_i + \lambda L_j)

{1x+y+z=12x+3y+4z=59x+8y+7z=6L2L2-2L1,L3L3-9L1{x+y+z=1y+2z=3-y-2z=-3 \left\{ \begin{aligned} {\color{red} 1}x + y + z &= 1 \\ 2x + 3y + 4z &= 5 \\ 9x + 8y + 7z &= 6 \\ \end{aligned} \right. \; \underset{ {L_2 \leftarrow L_2 - 2 L_1}, {L_3 \leftarrow L_3 - 9 L_1}}{\longrightarrow} \; \left\{ \begin{aligned} x + y + z &= 1 \\ y + 2z &= 3 \\ -y - 2z &= -3 \\ \end{aligned} \right.