For Ungrouped data: \begin{align} AM & = \frac{\sum_{i=1}^n x_i}{n} \end{align} For grouped data: \begin{align} AM & =\frac{\sum_{i=1}^n f_i x_i}{\sum_{i=1}^n f_i} \end{align}
For Ungrouped data: \begin{align} GM & = (\prod_{i=1}^{n} x_i)^\frac{1 }{n} \end{align} For Grouped data: \begin{align} GM & = (\prod_{i=1}^{k} {x_i}^{f_i})^\frac{1}{n} \end{align}
For Ungrouped data: \begin{align} HM & = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \end{align} For Grouped data: \begin{align} HM & = \frac{\sum_{i=1}^{N} f_i}{\sum_{i=1}^{N} \frac{f_i}{\frac{f_i}{x_i}}} \end{align}
For Ungrouped data:
$\frac{n+1}{2}$th value when \(n\) is odd and \(\frac{\frac{n}{2}th\space value + (\frac{n}{2} +1)th\space value }{2}\) when \(n\) is even.
For Grouped data: \begin{align} M_e & = L + \frac{\frac{N}{2}-F}{f} \times C \end{align}
For Ungrouped data:
Visible highest value.
For Grouped Data: \begin{align} M_o & = L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times C \end{align}
\begin{align} Q & = L + \frac{\frac{N}{4}i - F}{f} \times C \end{align}
\begin{align} D & = L + \frac{\frac{N}{10}i - F}{f} \times C \end{align}
\begin{align} QD & = \frac{Q_2 - Q_1}{2} \end{align}
For Ungrouped Data: $ MD\space of \space\bar{x} = \frac{\sum_{i=1}^{n} \lvert x_i - \bar{x} \rvert}{n} \\ MD\space of \space M_e = \frac{\sum_{i=1}^{n} \lvert x_i - M_e \rvert}{n}\\ MD\space of \space M_o = \frac{\sum_{i=1}^{n} \lvert x_i - M_o \rvert}{n} $
For Grouped Data: $ MD\space of \space\bar{x} = \frac{\sum_{i=1}^{n} f_i \lvert x_i - \bar{x} \rvert}{n} \\ MD\space of \space M_e = \frac{\sum_{i=1}^{n} f_i \lvert x_i - M_e \rvert}{n}\\ MD\space of \space M_o = \frac{\sum_{i=1}^{n} f_i \lvert x_i - M_o \rvert}{n} $
For Ungrouped Data: $ V\space of\space x = \frac{1}{n} \sum_{i=1}^{n}(x_i -\bar{x})^2 $
For Grouped Data: $ V\space of\space x = \frac{1}{N} \sum_{i=1}^{n} f_i (x_i -\bar{x})^2 $
Ungrouped: $ SD\space of\space x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} $
Grouped: \begin{align} SD\space of\space x & = \sqrt{\frac{1}{N} \sum_{i=1}^{n} f_i(x_i - \bar{x})^2} \end{align}
$ CV= \frac{Standard\space Deviation}{\bar{x}} \times 100 $
$ P(A) \\ =\frac{Favourable\space outcome\space\ of\space an\space event}{Number\space of\space outcomes\space of\space the\space experiment}\\ \\= \frac{m}{n} $
$$ P(A \cup B)=\\ P(A)+P(B)-P(A \cap B) $$
\begin{align} P(AB) & = P(A) \times P(B/A) \\ & = P(B) \times P(A/B) \end{align}
\begin{align} P(A/B)&= \frac{P(AB)}{B}\\ P(B/A)&= \frac{P(AB)}{A} \end{align}
$ P(B_k/A)=\frac{P(B_k) \cdot P(A/B_k)}{\sum_{i=1}^{n} P(B_i) \cdot P(A/B_i)} $
\begin{align} f(k;n,p)&= {n \choose k}p^k(i-p)^{n-k} \end{align}
\begin{align} f(k;\lambda)&=\frac{\lambda^k e^{-\lambda}}{k!} \end{align}
\begin{align} f(x,\mu,\sigma)&=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^2}{2\sigma ^2}} \end{align}
$ \hat{y_i}=\hat{\alpha} + \hat{\beta}x_i \begin{cases} \hat{\alpha}=\bar{y}-\hat{\beta}\bar{x} \\ \hat{\beta}=\frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sum(x_i - \bar{x})^2} \end{cases} $
$r=\frac{\sum{x_i y_i}-\frac{\sum x_i \sum y_i}{n}}{\sqrt{\{\sum{{x_i}^2}-\frac{(\sum x_i)^2}{n}\}\{\sum{{y_i}^2}-\frac{(\sum y_i)^2}{n}\}}} $